一聚教程网:一个值得你收藏的教程网站

最新下载

热门教程

html5中canvas 圆周运动和椭圆运动例子

时间:2022-06-25 18:11:59 编辑:袖梨 来源:一聚教程网


一. 圆周运动

1.1 思路分析:

圆的方程为:

// (x0, y0)为圆心位置;(x, y)为圆上的点
(x - x0) ^ 2 + (y - y0) ^ 2 = r ^ 2
cos(angle) ^ 2 + sin(angle) ^ 2 = 1
因此,综合以上两式,可得:

x = r * cos(angle) + x0
y = r * sin(angle) + y0

因此,应用正弦函数计算y坐标,用余弦函数计算x坐标。

1.2 实例:

// cancelRequestAnimFrame的兼容函数
window.cancelRequestAnimFrame = ( function() {
    return window.cancelAnimationFrame ||
        window.webkitCancelRequestAnimationFrame ||
        window.mozCancelRequestAnimationFrame ||
        window.oCancelRequestAnimationFrame ||
        window.msCancelRequestAnimationFrame ||
        clearTimeout;
} )();

window.onload = function() {
    var canvas = document.getElementById("canvas"),
        context = canvas.getContext("2d"),
        ball = new Ball(2),
        angle = 0,
        centerX = canvas.width / 2,
        centerY = canvas.height / 2,
        radius = 50,
        speed = 0.05,
        timer = null;

        ball.line;

    (function drawFrame() {
        timer = window.requestAnimationFrame(drawFrame, canvas);
        if(angle > Math.PI * 2 && timer) {
            window.cancelRequestAnimFrame(timer);
            timer = null;
        }
        // context.clearRect(0, 0, canvas.width, canvas.height);
        ball.y = centerY + Math.sin(angle) * radius;
        ball.x = centerX + Math.cos(angle) * radius;
        angle += speed;

        ball.draw(context);
    })();
}

二. 椭圆运动


2.1 思路分析:

椭圆的方程为:

// (x0, y0)为椭圆的圆心位置;(x, y)为椭圆上的点
[(x - x0) / radiusX] ^ 2 + [(y - y0) / radiusY] ^ 2 = 1
cos(angle) ^ 2 + sin(angle) ^ 2 = 1
因此,综合以上两式,可得:

x = radiusX * cos(angle) + x0
y = radiusY * sin(angle) + y0
由此可得出椭圆运动的坐标值。

2.2 实例:

// cancelRequestAnimFrame的兼容函数
window.cancelRequestAnimFrame = ( function() {
    return window.cancelAnimationFrame ||
        window.webkitCancelRequestAnimationFrame ||
        window.mozCancelRequestAnimationFrame ||
        window.oCancelRequestAnimationFrame ||
        window.msCancelRequestAnimationFrame ||
        clearTimeout;
} )();

window.onload = function() {
    var canvas = document.getElementById("canvas"),
        context = canvas.getContext("2d"),
        ball = new Ball(2),
        angle = 0,
        centerX = canvas.width / 2,
        centerY = canvas.height / 2,
        radiusX = 150,
        radiusY = 100,
        speed = 0.05,
        timer = null;

        ball.line;

    (function drawFrame() {
        timer = window.requestAnimationFrame(drawFrame, canvas);
        if(angle > Math.PI * 2 && timer) {
            window.cancelRequestAnimFrame(timer);
            timer = null;
        }
        // context.clearRect(0, 0, canvas.width, canvas.height);
        ball.y = centerY + Math.sin(angle) * radiusY;
        ball.x = centerX + Math.cos(angle) * radiusX;
        angle += speed;

        ball.draw(context);
    })();
}

热门栏目