一聚教程网:一个值得你收藏的教程网站

最新下载

热门教程

memcache分布式部署的原理分析

时间:2022-11-14 22:08:13 编辑:袖梨 来源:一聚教程网

今天在封装memcache操作类库过程中,意识到一直以来对memcache的使用都是局限在单台服务器的情况下,还没有使用到memcache的分布式部署。虽然知道memcache的分布式是怎么回事,但是为了更加深入的理解,还是通过谷歌搜索了这方面的相关资料。

下面是精摘于网络的一些关于 memcache分布式部署 的资料。

memcache分布式部署是什么呢?下面通过一个例子来认识一下:

假设memcached服务器有node1~node3三台, 应用程序要保存键名为“tokyo”“kanagawa”“chiba”“saitama”“gunma” 的数据。

memcache分布式部署

首先向memcached中添加“tokyo”。将“tokyo”传给客户端程序库后, 客户端实现的算法就会根据“键”来决定保存数据的memcached服务器。 服务器选定后,即命令它保存“tokyo”及其值。

memcache分布式部署

同样,“kanagawa”“chiba”“saitama”“gunma”都是先选择服务器再保存。

接下来获取保存的数据。获取时也要将要获取的键“tokyo”传递给函数库。 函数库通过与数据保存时相同的算法,根据“键”选择服务器。 使用的算法相同,就能选中与保存时相同的服务器,然后发送get命令。 只要数据没有因为某些原因被删除,就能获得保存的值。

memcache分布式部署

这样,将不同的键保存到不同的服务器上,就实现了memcached的分布式。 memcached服务器增多后,键就会分散,即使一台memcached服务器发生故障无法连接,也不会影响其他的缓存,系统依然能继续运行。

下面我们具体介绍一下 Consistent hashing算法

Consistent Hashing的简单说明

Consistent Hashing

首先求出memcached服务器(节点)的哈希值, 并将其配置到0~2SUP(32)的圆(continuum)上。 然后用同样的方法求出存储数据的键的哈希值,并映射到圆上。 然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器上。 如果超过2SUP(32)仍然找不到服务器,就会保存到第一台memcached服务器上。

从上图的状态中添加一台memcached服务器。余数分布式算法由于保存键的服务器会发生巨大变化 而影响缓存的命中率,但Consistent Hashing中,只有在continuum上增加服务器的地点逆时针方向的 第一台服务器上的键会受到影响。

Consistent Hashing

因此,Consistent Hashing最大限度地抑制了键的重新分布。 而且,有的Consistent Hashing的实现方法还采用了虚拟节点的思想。 使用一般的hash函数的话,服务器的映射地点的分布非常不均匀。 因此,使用虚拟节点的思想,为每个物理节点(服务器) 在continuum上分配100~200个点。这样就能抑制分布不均匀, 最大限度地减小服务器增减时的缓存重新分布。

下面再介绍一下虚拟节点

Consistent hashing算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜问题。例如我们的系统中有两台 server,其环分布如下:

虚拟节点

此时必然造成大量数据集中到Server 1上,而只有极少量会定位到Server 2上。为了解决这种数据倾斜问题,一致性哈希算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个此服务节点,称为虚拟节点。

具体做法可以在服务器ip或主机名的后面增加编号来实现。例如上面的情况,我们决定为每台服务器计算三个虚拟节点,于是可以分别计算“Memcached Server 1#1”、“Memcached Server 1#2”、“Memcached Server 1#3”、“Memcached Server 2#1”、“Memcached Server 2#2”、“Memcached Server 2#3”的哈希值,于是形成六个虚拟节点:

虚拟节点

同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Memcached Server 1#1”、“Memcached Server 1#2”、“Memcached Server 1#3”三个虚拟节点的数据均定位到Server 1上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布,避免出现雪崩的情况。

例子

启动Memcache服务,比如这样

代码如下 复制代码

/usr/local/bin/memcached -d -p 11213 -u root -m 10 -c 1024 -t 8 -P /tmp/memcached.pid
/usr/local/bin/memcached -d -p 11214 -u root -m 10 -c 1024 -t 8 -P /tmp/memcached.pid
/usr/local/bin/memcached -d -p 11215 -u root -m 10 -c 1024 -t 8 -P /tmp/memcached.pid

启动三个只使用10M内存以方便测试。


分布式部署
PHP的PECL扩展中的memcache实际上在2.0.0的版本中就已经实现多服务器支持,现在都已经2.2.5了。请看如下代码

代码如下 复制代码

$memcache = new Memcache;
$memcache->addServer('localhost', 11213);
$memcache->addServer('localhost', 11214);
$memcache->addServer('localhost', 11215);
$memStats = $memcache->getExtendedStats();
print_r($memStats);

通过上例就已经实现Memcache的分布式部署,是不是非常简单。

分布式系统的良性运行
在Memcache的实际使用中,遇到的最严重的问题,就是在增减服务器的时候,会导致大范围的缓存丢失,从而可能会引导数据库的性能瓶颈,为了避免出现这种情况,请先看Consistent hashing算法,中文的介绍可以参考这里,通过存取时选定服务器算法的改变,来实现。

修改PHP的Memcache扩展memcache.c的源代码中的

代码如下 复制代码

"memcache.hash_strategy" = standard

代码如下 复制代码
"memcache.hash_strategy" = consistent

重新编译,这时候就是使用Consistent hashing算法来寻找服务器存取数据了。

有效测试数据表明,使用Consistent hashing可以极大的改善增删Memcache时缓存大范围丢失的情况。

代码如下 复制代码
NonConsistentHash: 92% of lookups changed after adding a target to the existing 10
NonConsistentHash: 90% of lookups changed after removing 1 of 10 targets
ConsistentHash: 6% of lookups changed after adding a target to the existing 10
ConsistentHash: 9% of lookups changed after removing 1 of 10 targets


总结:

在动态分布式缓存系统里哈希算法承担着系统架构上的关键点。 使用分布更合理的算法可以使得多个服务节点间的负载相对均衡,可以最大程度的避免资源的浪费以及服务器过载。 使用一致性哈希算法,可以最大程度的降低服务硬件环境变化带来的数据迁移代价和风险。 使用更合理的配置策略和算法可以使分布式缓存系统更加高效稳定。

热门栏目