一聚教程网:一个值得你收藏的教程网站

热门教程

Python通过队列实现进程间通信代码示例

时间:2022-06-25 01:09:20 编辑:袖梨 来源:一聚教程网

本篇文章小编给大家分享一下Python通过队列实现进程间通信代码示例,文章代码介绍的很详细,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。

一、前言

在多进程中,每个进程之间是什么关系呢?其实每个进程都有自己的地址空间、内存、数据栈以及其他记录其运行状态的辅助数据。下面通过一个例子,验证一下进程之间能否直接共享信息。

定义一个全局变量g_num,分别创建2个子进程对g_num执行不同的操作,并输出操作后的结果。

代码如下:

# _*_ coding:utf-8 _*_
from multiprocessing import Process
def plus():
    print("-------子进程1开始----------")
    global g_num
    g_num += 50
    print("g_num is %d" % g_num)
    print("-------子进程1结束----------")
def minus():
    print("-------子进程2开始----------")
    global g_num
    g_num -= 50
    print("g_num is %d" % g_num)
    print("-------子进程2结束----------")
g_num = 100  # 定义一个全局变量
if __name__ == "__main__":
    print("-------主进程开始----------")
    print("g_num is %d" % g_num)
    p1 = Process(target=plus)  # 实例化进程p1
    p2 = Process(target=minus)  # 实例化进程p2
    p1.start()  # 开启p1进程
    p2.start()  # 开启p2进程
    p1.join()  # 等待p1进程结束
    p2.join()  # 等待p2进程结束
    print("-------主进程结束----------")

运行结果如图所示:

上述代码中,分别创建了2个子进程,一个子进程中令g_num加上50,另一个子进程令g_num减去50。但是从运行结果可以看出来,g_num在父进程和2个子进程中的初始值都是100。也就是全局变量g_num在一个进程中的结果,没有传到下一个进程中,即进程之间没有共享信息。

进程间示意图如图所示:

要如何才能实现进程间的通信呢?Python的multiprocessing模块包装了底层的机制,提供了Queue(队列)、Pipes(管道)等多种方式来交换数据。本文将讲解通过队列(Queue)来实现进程间的通信。

二、队列简介

队列(Queue)就是模型仿现实中的排队。例如学生在食堂排队买饭。新来的学生排队到队伍最后,最前面的学生买完饭走开,后面的学生跟上。

可以看出队列有两个特点:

新来的学生都排在队尾。

最前的学生完成后离队,后面一个跟上。

根据以上特点,可以归纳出队列的结构如图所示:

三、多进程队列的使用

进程之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。可以使用multiprocessing模块的Queue实现多进程之间的数据传递。Queue本身是一个消息队列程序,下面介绍一下Queue的使用。

初始化Queue()对象时(例如:q=Queue(num)),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接收的消息数量没有上限(直到内存的尽头)。

Queue的常用方法如下:

Queue.qsize():返回当前队列包含的消息数量。Queue.empty():如果队列为空,返回True;返之返回False。Queue.full():如果队列满了,返回True;反之返回False。Queue.get(block[,timeout]):获取队列中的一条信息,然后将其从队列中移除,block默认值为True。

如果block使用默认值,且没有设置timeout(单位秒),消息队列为空,此时程序将被阻塞(停在读取状态),直到从消息队列读到消息为止。如果设置了timeout,则会等待timeout秒,若还没有读取任何消息,则抛出“Queue.Empty”异常。

如果block值为False,消息队列为空,则会立刻抛出“Queue.Empty”异常。

Queue.get_nowait():相当于Queue.get(False)。Queue.put(item,[block[,timeout]]):将item消息写入队列,block默认值为True。

如果block使用默认值,且没有设置timeout(单位秒),消息队列如果已经没有空间可以写入,此时程序将被阻塞(停在写入状态),直到从消息队列腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没有空间,则抛出“Queue.Full”异常。

如果block值为False,消息队列没有空间可写入,则会立刻抛出“Queue.Full”异常

Queue.put_nowait(item):相当Queue.put(item,False)。

下面,通过一个例子学习一下如何使用processing.Queue。

代码如下:

# _*_ coding:utf-8 _*_
from multiprocessing import Queue
if __name__ == "__main__":
    q = Queue(3)
    q.put("消息1")
    q.put("消息2")
    print(q.full())  # 返回False
    q.put("消息3")
    print(q.full())  # 返回True
    # 因为消息队列已满,下面的try都会抛出异常
    # 第一个try会等待2秒再抛出异常,第二个try会立刻抛出异常
    try:
        q.put("消息4", True, 2)
    except:
        print("消息队列已满,现有消息数量:%s" % q.qsize())

    try:
        q.put_nowait("消息4")
    except:
        print("消息队列已满,现有消息数量:%s" % q.qsize())

    # 读取消息时,先判断消息队列是否为空,再读取
    if not q.empty():
        print("-----从队列中获取消息-------")
        for i in range(q.qsize()):
            print(q.get_nowait())
    # 先判读消息队列是否已满,再写入:
    if not q.full():
        q.put_nowait("消息4")

运行结果如图所示:

四、使用队列在进程间通信

我们知道使用multiprocessing.Process可以创建多进程,使用multiprocessing.Queue可以实现队列的操作。接下来,通过一个示例结合Process和Queue实现进程间的通信。

创建2个子进程,一个子进程负责向队列中写入数据,另外一个子进程负责从队列中读取数据。为了保证能够正确从队列中读取数据,设置读取数据的进程等待时间为2秒。如果2秒后乃然无法读取数据,则抛出异常。

代码如下:

# _*_ coding:utf-8 _*_
from multiprocessing import Process, Queue
import time
# 向队列中写入数据
def write_task(q):
    if not q.full():
        for i in range(5):
            message = "消息" + str(i)
            q.put(message)
            print("写入:%s" % message)
# 从队列中读取数据
def read_task(q):
    time.sleep(1)  # 休眠1秒
    while not q.empty():
        print("读取:%s" % q.get(True, 2))  # 等待2秒中,如果没有读取到任何信息,则抛出异常
if __name__ == "__main__":
    print("--------父进程开始---------")
    q = Queue()  # 父进程创建Queue,并传给各个子进程
    pw = Process(target=write_task, args=(q,))  # 实例化写入队列的子进程,并传递给队列
    pr = Process(target=read_task, args=(q,))  # 实例化读取队列的子进程,并传递给队列
    pw.start()  # 启动子进程pw,写入
    pr.start()  # 启动子进程pr,读取
    pw.join()  # 等待pw结束
    pr.join()  # 等待pr结束
    print("-------父进程结束-----------")

运行结果如下:

热门栏目