最新下载
热门教程
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
Python实现带GUI界面的手写数字识别代码
时间:2022-06-25 01:28:19 编辑:袖梨 来源:一聚教程网
本篇文章小编给大家分享一下Python实现带GUI界面的手写数字识别代码,文章代码介绍的很详细,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。
效果图
有点low,轻喷
点击选择图片会优先从当前目录查找
数据集
这部分我是对MNIST数据集进行处理保存
对应代码:
import tensorflow as tf import matplotlib.pyplot as plt import cv2 from PIL import Image import numpy as np from scipy import misc (x_train_all,y_train_all),(x_test,y_test) = tf.keras.datasets.mnist.load_data() x_valid,x_train = x_train_all[:5000],x_train_all[5000:] y_valid,y_train = y_train_all[:5000],y_train_all[5000:] print(x_valid.shape,y_valid.shape) print(x_train.shape,y_train.shape) print(x_test.shape,y_test.shape) #读取单张图片 def show_single_img(img_arr,len=100,path='/Users/zhangcaihui/Desktop/case/jpg/'): for i in range(len):#我这种写法会进行覆盖,只能保存10张照片,想保存更多的数据自己看着改 new_im = Image.fromarray(img_arr[i]) # 调用Image库,数组归一化 #new_im.show() #plt.imshow(img_arr) # 显示新图片 label=y_train[i] new_im.save(path+str(label)+'.jpg') # 保存图片到本地 #显示多张图片 def show_imgs(n_rows,n_cols,x_data,y_data): assert len(x_data) == len(y_data) assert n_rows * n_cols < len(x_data) plt.figure(figsize=(n_cols*1.4,n_rows*1.6)) for row in range(n_rows): for col in range(n_cols): index = n_cols * row + col plt.subplot(n_rows,n_cols,index+1) plt.imshow(x_data[index],cmap="binary",interpolation="nearest") plt.axis("off") plt.show() #show_imgs(2,2,x_train,y_train) show_single_img(x_train)
关于GUI设计
1)排版
#ui_openimage.py # -*- coding: utf-8 -*- # from PyQt5 import QtCore, QtGui, QtWidgets # from PyQt5.QtCore import Qt import sys,time from PyQt5 import QtGui, QtCore, QtWidgets from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtGui import * class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(1144, 750) self.label_1 = QtWidgets.QLabel(Form) self.label_1.setGeometry(QtCore.QRect(170, 130, 351, 251)) self.label_1.setObjectName("label_1") self.label_2 = QtWidgets.QLabel(Form) self.label_2.setGeometry(QtCore.QRect(680, 140, 351, 251)) self.label_2.setObjectName("label_2") self.btn_image = QtWidgets.QPushButton(Form) self.btn_image.setGeometry(QtCore.QRect(270, 560, 93, 28)) self.btn_image.setObjectName("btn_image") self.btn_recognition = QtWidgets.QPushButton(Form) self.btn_recognition.setGeometry(QtCore.QRect(680,560,93,28)) self.btn_recognition.setObjectName("bnt_recognition") #显示时间按钮 self.bnt_timeshow = QtWidgets.QPushButton(Form) self.bnt_timeshow.setGeometry(QtCore.QRect(900,0,200,50)) self.bnt_timeshow.setObjectName("bnt_timeshow") self.retranslateUi(Form) self.btn_image.clicked.connect(self.slot_open_image) self.btn_recognition.clicked.connect(self.slot_output_digital) self.bnt_timeshow.clicked.connect(self.buttonClicked) self.center() QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): #设置文本填充label、button _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "数字识别系统")) self.label_1.setText(_translate("Form", "点击下方按钮")) self.label_1.setStyleSheet('font:50px;') self.label_2.setText(_translate("Form", "0~9")) self.label_2.setStyleSheet('font:50px;') self.btn_image.setText(_translate("Form", "选择图片")) self.btn_recognition.setText(_translate("From","识别结果")) self.bnt_timeshow.setText(_translate("Form","当前时间")) # 状态条显示时间模块 def buttonClicked(self): # 动态显示时间 timer = QTimer(self) timer.timeout.connect(self.showtime) timer.start() def showtime(self): datetime = QDateTime.currentDateTime() time_now = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()) #self.statusBar().showMessage(time_now) #self.bnt_timeshow.setFont(QtGui.QFont().setPointSize(100)) self.bnt_timeshow.setText(time_now) def center(self):#窗口放置中央 screen = QDesktopWidget().screenGeometry() size = self.geometry() self.move((screen.width() - size.width()) / 2, (screen.height() - size.height()) / 2) def keyPressEvent(self, e): if e.key() == Qt.Key_Escape: self.close()
2)直接运行这个文件(调用1)
#ui_main.py import random from PyQt5.QtWidgets import QFileDialog from PyQt5.QtGui import QPixmap from ui_openimage import Ui_Form import sys from PyQt5 import QtWidgets, QtGui from PyQt5.QtWidgets import QMainWindow, QTextEdit, QAction, QApplication import os,sys from PyQt5.QtCore import Qt import tensorflow from tensorflow.keras.models import load_model from tensorflow.keras.datasets import mnist from tensorflow.keras import models from tensorflow.keras import layers from tensorflow.keras.utils import to_categorical import tensorflow.keras.preprocessing.image as image import matplotlib.pyplot as plt import numpy as np import cv2 import warnings warnings.filterwarnings("ignore") class window(QtWidgets.QMainWindow,Ui_Form): def __init__(self): super(window, self).__init__() self.cwd = os.getcwd() self.setupUi(self) self.labels = self.label_1 self.img=None def slot_open_image(self): file, filetype = QFileDialog.getOpenFileName(self, '打开多个图片', self.cwd, "*.jpg, *.png, *.JPG, *.JPEG, All Files(*)") jpg = QtGui.QPixmap(file).scaled(self.labels.width(), self.labels.height()) self.labels.setPixmap(jpg) self.img=file def slot_output_digital(self): '''path为之前保存的模型路径''' path='/Users/zhangcaihui/PycharmProjects/py38_tf/DL_book_keras/save_the_model.h5' model= load_model(path) #防止不上传数字照片而直接点击识别 if self.img==None: self.label_2.setText('请上传照片!') return img = image.load_img(self.img, target_size=(28, 28)) img = img.convert('L')#转灰度图像 x = image.img_to_array(img) #x = abs(255 - x) x = np.expand_dims(x, axis=0) print(x.shape) x = x / 255.0 prediction = model.predict(x) print(prediction) output = np.argmax(prediction, axis=1) print("手写数字识别为:" + str(output[0])) self.label_2.setText(str(output[0])) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) my = window() my.show() sys.exit(app.exec_())
缺点
界面low
只能识别单个数字
其实可以将多数字图片进行裁剪分割,这就涉及到制作数据集了
相关文章
- 《绝区零》伊芙琳培养材料汇总 01-24
- 《无限暖暖》1.2春节兑换码一览 01-24
- 《网上国网》查询阶梯档位方法 01-24
- 《蛋仔派对》神游贺岁盲盒获取方法 01-24
- 《炉石传说》星际联动盗贼卡组玩法介绍 01-24
- 皮革珊瑚属于珊瑚中的 01-24