最新下载
热门教程
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
pytorch使用batch训练lstm网络代码示例
时间:2022-06-25 01:58:41 编辑:袖梨 来源:一聚教程网
本篇文章小编给大家分享一下pytorch使用batch训练lstm网络代码示例,文章代码介绍的很详细,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。
batch的lstm
# 导入相应的包 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data as Data torch.manual_seed(1) # 准备数据的阶段 def prepare_sequence(seq, to_ix): idxs = [to_ix[w] for w in seq] return torch.tensor(idxs, dtype=torch.long) with open("/home/lstm_train.txt", encoding='utf8') as f: train_data = [] word = [] label = [] data = f.readline().strip() while data: data = data.strip() SP = data.split(' ') if len(SP) == 2: word.append(SP[0]) label.append(SP[1]) else: if len(word) == 100 and 'I-PRO' in label: train_data.append((word, label)) word = [] label = [] data = f.readline() word_to_ix = {} for sent, _ in train_data: for word in sent: if word not in word_to_ix: word_to_ix[word] = len(word_to_ix) tag_to_ix = {"O": 0, "I-PRO": 1} for i in range(len(train_data)): train_data[i] = ([word_to_ix[t] for t in train_data[i][0]], [tag_to_ix[t] for t in train_data[i][1]]) # 词向量的维度 EMBEDDING_DIM = 128 # 隐藏层的单元数 HIDDEN_DIM = 128 # 批大小 batch_size = 10 class LSTMTagger(nn.Module): def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size, batch_size): super(LSTMTagger, self).__init__() self.hidden_dim = hidden_dim self.batch_size = batch_size self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) # The LSTM takes word embeddings as inputs, and outputs hidden states # with dimensionality hidden_dim. self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True) # The linear layer that maps from hidden state space to tag space self.hidden2tag = nn.Linear(hidden_dim, tagset_size) def forward(self, sentence): embeds = self.word_embeddings(sentence) # input_tensor = embeds.view(self.batch_size, len(sentence) // self.batch_size, -1) lstm_out, _ = self.lstm(embeds) tag_space = self.hidden2tag(lstm_out) scores = F.log_softmax(tag_space, dim=2) return scores def predict(self, sentence): embeds = self.word_embeddings(sentence) lstm_out, _ = self.lstm(embeds) tag_space = self.hidden2tag(lstm_out) scores = F.log_softmax(tag_space, dim=2) return scores loss_function = nn.NLLLoss() model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix), batch_size) optimizer = optim.SGD(model.parameters(), lr=0.1) data_set_word = [] data_set_label = [] for data_tuple in train_data: data_set_word.append(data_tuple[0]) data_set_label.append(data_tuple[1]) torch_dataset = Data.TensorDataset(torch.tensor(data_set_word, dtype=torch.long), torch.tensor(data_set_label, dtype=torch.long)) # 把 dataset 放入 DataLoader loader = Data.DataLoader( dataset=torch_dataset, # torch TensorDataset format batch_size=batch_size, # mini batch size shuffle=True, # num_workers=2, # 多线程来读数据 ) # 训练过程 for epoch in range(200): for step, (batch_x, batch_y) in enumerate(loader): # 梯度清零 model.zero_grad() tag_scores = model(batch_x) # 计算损失 tag_scores = tag_scores.view(-1, tag_scores.shape[2]) batch_y = batch_y.view(batch_y.shape[0]*batch_y.shape[1]) loss = loss_function(tag_scores, batch_y) print(loss) # 后向传播 loss.backward() # 更新参数 optimizer.step() # 测试过程 with torch.no_grad(): inputs = torch.tensor([data_set_word[0]], dtype=torch.long) print(inputs) tag_scores = model.predict(inputs) print(tag_scores.shape) print(torch.argmax(tag_scores, dim=2))
相关文章
- 《彩色点点战争》推图常用三大主c玩法详解 01-23
- 《燕云十六声》池鱼林木任务攻略 01-23
- 《大连地铁e出行》查看行程记录方法 01-23
- 《明日方舟》2025春节限定干员余角色介绍 01-23
- 《崩坏:星穹铁道》万敌光锥搭配攻略 01-23
- 《燕云十六声》一药千金任务攻略 01-23