一聚教程网:一个值得你收藏的教程网站

最新下载

热门教程

TensorFlow和keras中GPU使用的设置操作代码

时间:2022-06-25 02:01:10 编辑:袖梨 来源:一聚教程网

本篇文章小编给大家分享一下TensorFlow和keras中GPU使用的设置操作代码,文章代码介绍的很详细,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。

1. 训练运行时候指定GPU

运行时候加一行代码:

CUDA_VISIBLE_DEVICES=1 python train.py

2. 运行过程中按需或者定量分配GPU

tensorflow直接在开启Session时候加几行代码就行,而Keras指定GPU,并限制按需用量和TensorFlow不太一样,因为keras训练是封装好的,不好对Session操作。如下是两种对应的操作。

keras中的操作:

import os
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
 
# 指定第一块GPU可用 
os.environ["CUDA_VISIBLE_DEVICES"] = "0" #指定GPU的第二种方法
 
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC' #A "Best-fit with coalescing" algorithm, simplified from a version of dlmalloc.
config.gpu_options.per_process_gpu_memory_fraction = 0.3 #定量
config.gpu_options.allow_growth = True  #按需
set_session(tf.Session(config=config)) 

TensorFlow中的操作:

#指定GPU
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
 
#设置GPU定量分配
config = tf.ConfigProto() 
config.gpu_options.per_process_gpu_memory_fraction = 0.9 # 占用GPU90%的显存 
session = tf.Session(config=config)
 
#设置GPU按需分配
config = tf.ConfigProto() 
config.gpu_options.allow_growth = True 
session = tf.Session(config=config)

热门栏目