最新下载
热门教程
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
Django框架querySet有什么功能 Django框架querySet功能解析
时间:2022-06-24 21:20:51 编辑:袖梨 来源:一聚教程网
本篇文章小编给大家分享一下Django框架querySet功能解析,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。
可切片
使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。
>>> Entry.objects.all()[:5] # (LIMIT 5)
Entry.objects.all()[5:10] # (OFFSET 5 LIMIT 5)
不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。
可迭代
articleList=models.Article.objects.all() for article in articleList: print(article.title)
惰性查询
查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。
queryResult=models.Article.objects.all() # not hits database print(queryResult) # hits database for article in queryResult: print(article.title) # hits database
一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值。 关于求值发生的准确时间,参见何时计算查询集。
缓存机制
每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。
在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。
请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:
print([a.title for a in models.Article.objects.all()]) print([a.create_time for a in models.Article.objects.all()])
这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它:
queryResult=models.Article.objects.all() print([a.title for a in queryResult]) print([a.create_time for a in queryResult])
何时查询集不会被缓存?
查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。
例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:
>>> queryset = Entry.objects.all() >>> print queryset[5] # Queries the database >>> print queryset[5] # Queries the database again
然而,如果已经对全部查询集求值过,则将检查缓存:
>>> queryset = Entry.objects.all() >>> [entry for entry in queryset] # Queries the database >>> print queryset[5] # Uses cache >>> print queryset[5] # Uses cache
下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:
>>> [entry for entry in queryset] >>> bool(queryset) >>> entry in queryset >>> list(queryset)
注:简单地打印查询集不会填充缓存。
queryResult=models.Article.objects.all() print(queryResult) # hits database print(queryResult) # hits database
exists()与iterator()方法
exists:
简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:
if queryResult.exists(): #SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=() print("exists...")
iterator:
当queryset非常巨大时,cache会成为问题。
处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。
objs = Book.objects.all().iterator() # iterator()可以一次只从数据库获取少量数据,这样可以节省内存 for obj in objs: print(obj.title) #BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了 for obj in objs: print(obj.title)
当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。
相关文章
- 《彩色点点战争》推图常用三大主c玩法详解 01-23
- 《燕云十六声》池鱼林木任务攻略 01-23
- 《大连地铁e出行》查看行程记录方法 01-23
- 《明日方舟》2025春节限定干员余角色介绍 01-23
- 《崩坏:星穹铁道》万敌光锥搭配攻略 01-23
- 《燕云十六声》一药千金任务攻略 01-23