一聚教程网:一个值得你收藏的教程网站

最新下载

热门教程

Opencv Hough算法实现图片中直线检测

时间:2022-06-25 07:39:43 编辑:袖梨 来源:一聚教程网

本文实例为大家分享了Opencv Hough算法实现直线检测的具体代码,供大家参考,具体内容如下

(1)载入需检测的图及显示原图

Mat g_srcImage = imread("C:UserslenovoPicturesSaved PicturesQ.jpg"); //图片所放路径  
imshow("【原始图】", g_srcImage);

(2)为显示不同的效果图而设置滑动条

namedWindow("【效果图】", 1);
createTrackbar("值", "【效果图】", &g_nthreshold, 200, on_HoughLines);

(3)图像处理及显示

//进行边缘检测和转化为灰度图 
 Canny(g_srcImage, g_midImage, 50, 200, 3);//进行一次canny边缘检测 
 cvtColor(g_midImage, g_dstImage, CV_GRAY2BGR);//转化边缘检测后的图为灰度图 
 //调用一次回调函数,调用一次HoughLinesP函数 
 on_HoughLines(g_nthreshold, 0);
 HoughLinesP(g_midImage, g_lines, 1, CV_PI / 180, 80, 50, 10);
 //显示效果图  
 imshow("【效果图】", g_dstImage);
 waitKey(0);
 return 0;

(4)主要函数:on_HoughLines()

//定义局部变量储存全局变量 
 Mat dstImage = g_dstImage.clone();
 Mat midImage = g_midImage.clone();
 //调用HoughLinesP函数 
 vector mylines;
 HoughLinesP(midImage, mylines, 1, CV_PI / 180, g_nthreshold + 1, 50, 10);
 //循环遍历绘制每一条线段 
 for (size_t i = 0; i < mylines.size(); i++)
 {
 Vec4i l = mylines[i];
 line(dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(23, 180, 55), 1, CV_AA);
 }
 //显示图像 
 imshow("【效果图】", dstImage);

(5)源代码:

#include  
#include  
#include  
 
using namespace std;
using namespace cv;
 
 
Mat g_srcImage, g_dstImage, g_midImage;//原始图、中间图和效果图 
vector g_lines;//定义一个矢量结构g_lines用于存放得到的线段矢量集合 
//变量接收的TrackBar位置参数 
int g_nthreshold = 100;
 
static void on_HoughLines(int, void*);//回调函数 
static void ShowHelpText();
 
int main()
{
 //改变console字体颜色 
 system("color 3F");
 ShowHelpText();
 //载入原始图和Mat变量定义   
 Mat g_srcImage = imread("C:UserslenovoPicturesSaved PicturesQ.jpg"); 
 //显示原始图  
 imshow("【原始图】", g_srcImage);
 //创建滚动条 
 namedWindow("【效果图】", 1);
 createTrackbar("值", "【效果图】", &g_nthreshold, 200, on_HoughLines);
 //进行边缘检测和转化为灰度图 
 Canny(g_srcImage, g_midImage, 50, 200, 3);//进行一次canny边缘检测 
 cvtColor(g_midImage, g_dstImage, CV_GRAY2BGR);//转化边缘检测后的图为灰度图 
 //调用一次回调函数,调用一次HoughLinesP函数 
 on_HoughLines(g_nthreshold, 0);
 HoughLinesP(g_midImage, g_lines, 1, CV_PI / 180, 80, 50, 10);
 //显示效果图  
 imshow("【效果图】", g_dstImage);
 waitKey(0);
 return 0;
}
static void on_HoughLines(int, void*)
{
 //定义局部变量储存全局变量 
 Mat dstImage = g_dstImage.clone();
 Mat midImage = g_midImage.clone();
 //调用HoughLinesP函数 
 vector mylines;
 HoughLinesP(midImage, mylines, 1, CV_PI / 180, g_nthreshold + 1, 50, 10);
 //循环遍历绘制每一条线段 
 for (size_t i = 0; i < mylines.size(); i++)
 {
 Vec4i l = mylines[i];
 line(dstImage, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(23, 180, 55), 1, CV_AA);
 }
 //显示图像 
 imshow("【效果图】", dstImage);
}
static void ShowHelpText()
{
 //输出一些帮助信息 
 printf("nnnt通过调整滚动条观察图像的不同效果~nn");
 printf("nnttt by浅墨");
}

(6)原图:

效果图(调节滑条显示不同结果图):

值为100时:

值为23时:

 

值为60时:

值为126时:

 

值为184时:

 

热门栏目